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ABSTRACT

One of the active areas of computational aeroacoustics is the application of the
Kirchhoff formulas to the problems of the rotating machinery noise prediction. The
original Kirchhoff formula was derived for a stationary surface. In 1988, Farassat and
Myers derived a Kirchhoff Formula obtained originally by Morgans using modern
mathematics. These authors gave a formula particularly useful for applications in
aeroacoustics. This formula is for a surface moving at subsonic speed. Later in 1995
these authors derived the Kirchhoff formula for a supersonically moving surface. This
technical memorandum presents the viewgraphs of a day long workshop by the author
on the derivation of the Kirchhoff formulas. All necessary background mathematics
such as differential geometry and multidimensional generalized function theory are
discussed in these viewgraphs. Abstraction is kept at minimum level here. These
viewgraphs are also suitable for understanding the derivation and obtaining the
solutions of the Ffowcs Williams-Hawkings equation. In the first part of this
memorandum, some introductory remarks are made on generalized functions, the
derivation of the Kirchhoff formulas and the development and validation of Kirchhoff
codes. Separate lists of references by Lyrintzis, Long, Strawn and their co-workers are
given in this memorandum. This publication is aimed at graduate students, physicists
and engineers who are in need of the understanding and applications of the Kirchhoff
formulas in acoustics and electromagnetics.

INTRODUCTION

When Ffowcs Williams and Hawkings published their now famous paper on the noise
from moving surfaces in 1969 [1], they used a level of mathematical sophistication
unfamiliar to engineers who would later be the main users of this work. Advanced
generalized function theory and differential geometry were employed by these authors
to derive the Ffowcs Williams-Hawkings (FW-H) equation and to obtain some important
gualitative results in this paper. The subject of generalized functions is very abstract,
particularly as described in books written by mathematicians. The level of differential



geometry needed in acoustics is, however, basic and at the level essentially fully
developed by the end of the nineteenth century. Both of these subjects are not
emphasized in engineering education. It is possible to teach advanced generalized
function theory to engineers if some of the abstractions are left out initially. One needs
to learn how to work with multidimensional Dirac delta functions and their derivatives
concentrated on moving surfaces, i.e. with support on moving surfaces. This goal can
be achieved.

This technical memorandum is on the derivation of the Kirchhoff formulas for moving
surfaces. The main part of this memorandum is the copies of the viewgraphs based on
lectures delivered by the author in the Workshop on Kirchhoff Formulas for Moving
Surfaces at NASA Langley Research Center on February 15, 1995 (see Appendix).
Attempt was made to present all the mathematical machinery needed in the derivation
of Kirchhoff formulas. One of the publications of the author [2], NASA TP-3428 (May
1994), should also be consulted, if needed, to fill in some details. The author and M. K.
Myers have published two papers on the derivation of Kirchhoff formula for moving
surfaces [3, 4] which should be easily comprehended by the readers reading the
material in the Appendix.

Below we briefly introduce the concept of Generalized Functions. Then we discuss
the derivation of the subsonic and supersonic Kirchhoff formulas. Finally we make
some remarks on the development and validation of codes based on the Kirchhoff
formulas.

GENERALIZED FUNCTIONS

Our main reference for this section is NASA TP-3428 [2]. To derive the Kirchhoff
formulas for moving surfaces, we need to learn how to manipulate multidimensional
Dirac delta functions and their derivatives. Some knowledge of differential geometry
and tensor analysis is also essential. In addition to [2], we give some other useful
references on generalized functions as well as on differential geometry and tensor
analysis in this paper [5-13]. To learn about generalized functions, we need a change of
paradigm in the way we look at ordinary functions. Ordinary functions are locally
(Lebesgue) integrable functions, i.e., functions that have a finite integral over any finite
interval. This change of paradigm is actually very familiar in mathematics. For



example, learning about fractions, negative numbers and complex numbers involves a
change of paradigm although we are not told that the change is occurring.

How do we think of an ordinary function f(x)? We think of this function as a table of
ordered pairs (x, f(x)). A graph of a function is a plot of this table. In generalized

function theory, we need to work with mathematical objects such as the Dirac delta
"“function" d(x) with the sifting property

2w (x)3(x)dx = ¢(0) (1)

It can be shown that no ordinary function has this property. The Dirac delta function is
an example of a generalized function which is not an ordinary function. To include d(x)
and other such useful but strange objects in mathematics, we change our method of
thinking about functions as follows. Suppose we take a space of functions D which will
be called test function space. We will be more specific about D below. Now given an
ordinary function f(x), let us define the functional

Flo] = [Z, fodx, ¢@OD. (2)

If we take the space D large enough, then there is a possibility that the table of
functional values F[¢| where @ O D can identify f(x). This is actually true if we take

the space D as the space of all ¢® functions which are identically zero beyond a
bounded interval, i.e., with compact support. Therefore, the new paradigm of viewing a
function is: think of the function f(x) in terms of the table {F[go], o O D}. We can

show that this table includes an uncountable number of elements.

Next, one shows that the functional F[qo] given by eq. (2) is linear and continuous for
an ordinary function f(x) [2, 7-9]. We ask whether all continuous linear functionals are
produced by ordinary functions from eq. (2). The answer is no. For example, the
functional

S[¢] = 9(0) @OD 3)



is linear and continuous. Therefore, the class of linear and continuous functionals is
larger than the class generated by ordinary functions through eq. (2). Now, using our
new paradigm of thinking of a function as a table generated by the functional rule we
say:

a generalized function is identified by the table produced using a continuous linear
functional on space D.

By an abuse of terminology, we say that:
generalized functions are continuous linear functionals on space D.

By this definition the functional in eq. (3) is (represents) the Dirac delta function! Note
that each continuous linear functional on space D produces (represents, identifies,
gives) one generalized function. Ordinary functions then become a subset of
generalized functions called regular generalized functions. Other functions are called
singular generalized functions.

Next the operations on ordinary functions are extended to all generalized functions in
such a way that they are equivalent to the old definitions when applied to ordinary

functions. To do this, one should write the operation in the language of functionals on
space D. For example, the derivative of generalized function F[go] is defined by

Flo] = -F[o] 4)

In this way, many operations on ordinary functions can be extended to generalized
functions [2, 5-9].

Finally, we mention here that the space of generalized functions on D is called D'.
For any singular generalized function F[¢|, we use eq. (2) with a symbolic function

f (x) under the integral sign. Here the integral does not represent an ordinary integral
but stands for the rule specified by F[¢]. For example, (x) is a symbolic function
which is interpreted as follows. Interpret [ 8(x)@(x) dx as d[¢| = @(0) for all ¢ O D,

i.e., in our new way of looking at functions as a table of functional values on space D



5(x) = {9(0), p 0D} . (5)

Of utmost importance to us are delta functions and their derivatives with support on a
surface f = 0. Here f = f(x) or f = f(x,t). We give the following two results [2]

assuming that |Of| = 1on f = 0, which is always possible:

Jo(X)o(f)dx = [;_q@dS (6)
I(P(>r<)5'(f)d>r< = [f=0 E—g—f+2chpEds 7)

where H; is the local mean curvature of the surface f = 0 with dS the element of the
surface area. Also if the function f(x) has a discontinuity across a surface g(x) = 0
with the jump defined as

Af=1f(g=0,)-f(g=0_), (8)
then
Of =0Of + A f Og 5(9) 9)

where Of is the generalized gradient of f()'() (see [2]). Finally, we mention here that

the Green's function method is valid for finding solutions of differential equations with
discontinuities (weak solutions) provided that all derivatives in the differential equation
are viewed as generalized derivatives.

THE KIRCHHOFF FORMULAS FOR MOVING SURFACES

Assume that f(x,t) = 0 is the moving Kirchhoff surface defined such that |Of | = 1
on this surface. Let ¢ satisfy the wave equation in the exterior Q of f = 0, i.e.,

D%0=0 x0OQ (10)

Extend ¢ to the entire unbounded space as follows, calling the extended function ¢



0Q
09 (11)

The governing equation for deriving the Kirchhoff formula for moving surfaces is then
found by applying the generalized wave operator (D'Alembertian) to ¢ to get [2-4]:

52¢=—B%+%Mn(p(86(f)—%%[Mn(p6(f)] ~0ens(f)] (12)

where M, = v, / c is the local normal Mach number on f =0, @, = dp/ Jdn and
@ = Jdpl ot.

We can now apply the Green's function method for the wave operator in the
unbounded space to eq. (11) to find the Kirchhoff formula for subsonically moving
surfaces [3]. The formula involves a Doppler singularity making it inappropriate for a
supersonically moving surface. For supersonic surfaces, we derive the Kirchhoff
formula for an open surface (e.g. a panel). The reason is that the Kirchhoff surface is
usually divided into panels and the formula is applied individually to each panel. The
subsonic formula, applies to both open and closed surfaces. However, the supersonic
formula differs for open and closed surfaces. If the formula for an open surface is
known, obtaining the formula for a closed surface is trivial.

The governing equation for deriving the supersonic Kirchhoff formula for a panel is

0% = - +%Mn¢ngH(f)5(f) —%%[anoH(f)é(f)] -0 E[(prrlH(f)é(f)]

(13)

where H(f) is the Heaviside function, f is a function such that f > 0 on the panel and

f = f = 0 defines the edge of the panel. The derivatives on the right side of eq. (13)
are brought inside to get three source terms involving H(f) 3(f), H(F) 5'(f) and

5(?) 5(f) [4]. The solutions of the wave equation with these kinds of sources are

given by the author [2]. The Kirchhoff formula for a supersonically moving surfaces
using the above method was derived and presented by Farassat and Myers [4]. Itis a



particularly simple and straightforward result and easy to apply. This formula requires
the mean curvature Hg of the surface Z: F(y; X, t) = [ (Y, 7)] . We give the formula
for calculation of Hg in the Appendix in terms of the geometric and kinematic
parameters of the Kirchhoff surface f = 0.

SOME REMARKS ON DEVELOPMENT AND VALIDATION OF KIRCHHOFF CODES

The development of a Kirchhoff code requires a good subroutine for retarded time
calculation if the Kirchhoff surface is rotating. The possibility of multiple emission times
for a supersonic panel complicates retarded time calculation, particularly for two nearly
equal emission times. If the Kirchhoff surface is not selected properly for the supersonic
formula, there is the possibility of a singularity [4]. This singularity can be avoided as
suggested by Farassat and Myers [4] or by using two different Kirchhoff surfaces for
different intervals of the observer time. There is a fool-proof test of the Kirchhoff code
that must not be ignored by code developers. Both of the Kirchhoff formula for moving
surfaces, as well as that for a stationary surface, are written such that (Np = 0 inside a

closed surface. Therefore, to test a Kirchhoff code, use a point source inside the closed
surface and specify ¢, ¢ and @, analytically on the Kirchhoff surface f = 0. If the

observer is now put anywhere inside f = 0 and (Np # 0, then there is a bug in the code.
One must rule out conceptual misunderstanding of the parameters in the formulation
first. It is recommended that one should be familiar with the complete details of the
derivation of the Kirchhoff formulas to avoid conceptual misunderstanding.

There have been many derivations of the Kirchhoff formula for uniform rectilinear
motion of the Kirchhoff surface [14, 15]. These formulas do not have the generality of
Morgans formula derived and rewritten in a new form using modern mathematics by
Farassat and Myers [3]. Myers and Hausmann [16] were among the first to use the new
Kirchhoff formula in aeroacoustics. Other researchers include Lyrintzis, Long, Strawn
and Di Francescantonio [17]. We give separately the publications of Lyrintzis, Long,
Strawn and their co-workers.

CONCLUDING REMARKS
The availability of high resolution aerodynamics and turbulence simulation make the
Kirchhoff formulas discussed here attractive in aeroacoustics. The mathematics for
derivation of these formulas have been under development in the last decade and are



well within the reach of modern engineers. The final form of the formulas are simple
and relatively easy to apply. The present paper is written as a guide to understanding
the mathematical derivation as well as application of these results.

The viewgraphs in the Appendix give all the necessary mathematical background for
the derivation of the Kirchhoff formulas. Note that the mathematical part of the
Appendix is also suitable for understanding the derivation and the solutions of the
Ffowcs Williams-Hawkings equation. This publication is aimed at graduate students,
physicists and engineers who are in need of the understanding and applications of the
Kirchhoff formulas in acoustics and electromagnetism.
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Avalilable Methods of Noise Prediction in Aeroacoustics

Today we have three methods available. These are:

1.

The Acoustic Analogyintroduced into aeroacoustics by Lighthill (1952).

Applications to rotating blades are based on Ffowcs Williams-Hawking

JJ

S

(FW-H) equation (1969). It is the most developed method and is widely in

use in the aircraft industry.

The Kirchhoff Formula based method. Originally suggested by Hawkings

In aeroacoustics (1979), this method is currently under development.
Availability of high resolution aerodynamics and powerful computers m
make this approach very popular in the future.

The CFD Based CAA(Computational Aeroacoustics). This method is
under development and is the least mature of the three methods. It ma
appropriate for some problems. Computational Technigues developed
will also help the above two methods.

ay

y be
here
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Classical Kirchhoff Formula (1882)

- Q, + c1pcosh]
4Tp(x, t) = J’ - s
[¢pcosO]
" J. 5 ret ds
7 I
=0 f = 0 stationary:
Kirchhoff surface

ret: retarded timer,on = g—(ﬁ ) &Y

« Givesg in terms of alues ofp, @ andg, on the Kirchhdfsurface. It iSGreen’s
|dentity for the wave equation. Compare with the

following identity for Laplace equation: X
Obs.
amp(x) =~ [ - s+ f ‘Pcoseds
f 0 ¢ ¢
- We derive both above results by the same method oren
using generalized function theory. =0 problom
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Classical Kirchhoff Formula (Cont'd)

Derived in 1882 by G. Kirchhoff

See Classical Derivation by D. S. Jon&€ké Theory of ElectromagnetiSm
Pergamon Press, 1964, sec. 1.17, p. 40. Also see M. Born and E. Wolf
“Principles of Optics Pergamon Press, 1970, sec. 8.3, p. 375 (good
applications here).

Applications in optics, electromagnetism and acoustics are very extensive.
Until recently the classical Kirchhoff formula has been used either as

approximation or for qualitative understanding of fields governed by the wave

equation. The availability of high speed digital computers has changed this

picture. Simulation of the wave field is possible and rewarding! Extension to

moving surfaces has opened new applications.

See also A. D. PiercAtoustics Acoust. Soc. Am. 1989, p. 180.
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Why are Kirchhoff Formulas Important in Acoustics

» Accurate prediction of the noise of

helicopter rotors, propellers and ducted| 0%’ =0 CFD calculations
fans, particularly at design stage, is 7& inside
needed to reduce the passenger and pyblic

annoyance and to meet noise standardg’coustic

‘waves

* Low noise aircraft and propulsion systems
sell better in the international market. >
Therefore, noise prediction tools to megt -
U.S. aircraft and engine industry needs
must be developed.

 Kirchhoff formulas for moving surfaces

Kirchhoff
surface in
motion

Kirchhoff data p', p', p'p
obtained from CFD on
Kirchhoff surface

coupled to advanced CFD codes supply
an efficient and powerful tool for noise
prediction. See box above.

F. Farassat, Aeroacoustics Branch
Fluid Mechanics and Acoustics Division
NASA Langley Research Center
Hampton, Virginia
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What is this Workshop About?

» Ourprimary purposan this workshop is the derivation of two Kirchhoff
formulas for subsonic and supersonic surfaces.

* When working with inhomogeneous wave equation for moving sources using
classical methods, we notice that the algebraic manipulations quickly become
complicated. We lose track of cancellations and simplifications. We need
special tools from mathematics which give us simple and direct method of
derivation.

* Thesecondary purposef this workshop is to gie all the necessary tools from
generalized function (GF) theory, P.D.E.'s and differential geometry.
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Method of Deriving Kirchhoff Formulas

* We reduce the derivation of the three Kirchhoff formulas (stationary, subsonic
and supersonically moving surface) here to the solution of wave equation
02 ¢ = Q whereQ is a generalized function (suchgggf)). This is the most
direct approach to deing Kirchhoff fomulas. One must, therefore, learn some
generalized function theory. The source distributions are on moving surfaces
and irvariably the geometry of these sacés enters the deaition. Wthout the
knowledge of differential geometry of surfaces, we cannot identify surface
curvature terms and other geometric quantities resulting in a large number of
meaningless terms in the Kirchh@drmula. A formula in this form is notary
useful in applications.

« Note: In applications, the Kirchhoff surface is divided into panels and the
contributions of individual panels are added together. The stationary and
subsonic Kirchhoff formulas remain unchanged for open or closed surfaces.
We derive the supersonic formula for an open surface only. The extension to a
closed surface is trivial.
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Elements of Generalized Function Theory
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Models of Functions

Old (Conventional) Model: We think of a
function as a table of ordered paixsf(x))

where for eacl, f(x) is unique. This table
can be graphed as shown and usually has ap
uncountable number of ordered pairs.

f(x)

Xo

New Model We think of a functiori by its
action (functional valueson a given space of
ordinary functions calletest function space
This action for ordinary functions is defined hyy

Flo] = J’f(x)(p(x)dx.The functiorf is now

Test
functions

®x)

Ordinary
functions

f(x)

Flg] = J 1(x) @(x) dx

defined (identified, thought of) by the new table
{F[q@], @is in the test function space}. This view
ordinary functions now allows us to incorporate
d(X) into mathematics rigorously.

of

F. Farassat, Aeroacoustics Branch
Fluid Mechanics and Acoustics Division
NASA Langley Research Center
Hampton, Virginia
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A Familiar Example of Thinking About Functions by
New Model

Consider space of periodic functions with period Take theest function space
to be the space formed by functiaps = exp(inx), n = 0,1, +2, .... Letf be
periodic with period & The Fourier coefficients dfcan be viewed as
functionals on test function space by the relation

Flon) = 5 [ 100e ™ d

From the theory of Fourier analysis, we know that the following table of Fourier
coefficients (i.e.functional value®f f on test function space) contains the same
iInformation ad (X):

{Flg,],n=0,+1£2, ...}

Note that if f (x) # g(Xx), whereg (X) is another periodic function with perioa,2
then

Flog) # Gley) = 5 [ 90"

for some n, i.e., the new table uniquely defines functions.
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Elementary Generalized Function Theory

The main reason to develop the generalized function theory is to include
mathematical objects such as the Dirac delta “funcidgxy. This function has
the sifting property

[ 00)8(x)dx = §(0)

To include these objects in mathematics, we need to change our thinking &
functions. The reason we must change our thinking about functions is that
ordinary function can have the sifting property. We must therefore enlarge 1
space of functions by a process familiar in mathematics: define (look at, vie
functions in a way which includes all ordinary functions as well as objects |
the Dirac delta function. This sschange of paradigrfamiliar to us when we
learned fractions, negative numbers and complex numbers.

\bout
no
the
W)
ke
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Definition of Generalized Functions

» A functionalon a space of functiorf3 is a mapping (a rule) @ into scalars
(real or complex numbers).

Examples TakeQ as space of differentiable functions. The following are
functionals o, ge Q

) Flol = ¢/(0)+20(1) i) Flol = [ ¢2(x)x

i) F[o] = sin[¢(0)] v) Flo] = 2<P(1)+I_11<P(X)dx

 In the theory, the functionals act on various test function spaces depending on
the problem. We define generalized functions on the following test function
space:

Space D of Test Functionsinfinitely differentiable functions with bounded
support.

» Thesupportof a functiong is the closure of the set on whiple 0 . We use
suppe for support ofp.
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Definition of Generalized Functions (Cont’d)

« Example of functions in D:

[] 22 el

: L

) Let @(Xx; a) = [ exp[xz_azJ X <a | .
] a | a
O 0 x| = a 0 ()

O @(x;a)eD
) Let g(X) be any continuous function, then

W(x) = I;g(y)cp(x— y; aydy, where b, c] is a finite interval, belongs

to D. We can show that supgp(x) = [b—a, c+ a]

« Example (ii), above, shows that space D is populated with an uncountably
infinite number of functions. This means that the table of functional values on
D in our new model of functions has an uncountably infinite number of
members.
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Definition of Generalized Functions (Cont’d)

* By anordinary functionwe mean a locally (Lebesgue) integrable function.

A Reminder: In our new model of thinking about functions, we identify an
ordinary functiorf(x) by table{ F[ @] :If(pdx, @eD} .

The functionalF[@] = If(pdx Idinear andcontinuous We define linearity and
continuity below.

* Afunctional on D idinear if F[ag, +Be,] = aF[@,] + BF[o,] for all @,
andg, inD

 Examples @eD
)  F[o] = ¢@(0) is linear
) F[o] = 2¢'(1) —J’f(pdx, f an ordinary function, is linear

i) F[o] = ©?(0)is nonlinear
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Definition of Generalized Functions (Cont’d)

* A sequence of functionisp,} in D converes to zep in D, written asp, D 0,
If @, and all its dewsatives conerge uniformly to zero andupp@, LI | for all
n wherel is a fixed bounded interval.

* A functional on D iscontinuousf F[@y] — Oif @ D o

their nicest properties.

Examples

) Letg, = %(p(x; a), where@(x; a) was defined earlief) @ Do

) @, = %cp%; %ED P, D, 0 because sup@, = [-na, na] becomes

unbounded aR - o

i) Linear functionals in the examples on previous vugraph are continuo

Iv) O[] = ¢@(0), geD, is continuous (It is also linear.)

This definition seems very strange but gives generalized functions some

of

US.
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Definition of Generalized Functions (Cont’d)

« Any ordinary functiorf defines a continuous linear functional on D by the
relationF[@] = (fedx , @eD. But ordinary functions do not exhaust all
continuous linedr functionals on D.

» Definition of Generalized Functions A continuous linear functional on space
D defines @yeneralized functianThe space of all generalized functions is
denotedD’

Examples @eD

) O[] = ©(0) defines a generalized function. We can show that there is no
ordinary functiorf(x) such thaff f (x)(x)dx = @(0) . This means that
D' is larger than the space of ordinary functions.

) G[o] = 2¢'(1) + ij(pdx, f ordinary function, defines a generalized
function
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Definition of Generalized Functions (Cont’d)

* |t is inconvenient to work with functional notation in mathematical
manipulations. For this reason, we introduce the notation of symbolic
functions for those generalized functions which are not ordinary functions.
Ordinary functions are calladgular generalized functions. Other generalized
functions are calledingulargeneralized functions. For singular generalized
functionF[¢|, we define the symbolic functid(x) so that

If (X)p(x)dx = F[q] for @eD. It is important to recognize that the integral on

the left is just a symbol standing fefg] and one should not treat it as an
ordinary integral.

This is the picture of the space of
Singular gen. fns. generalized function®’ we
@D should have in mind.

G[4] = Jg(x) @(x) dx

g(x) symbolic fn.

DI

F[¢] = ffedx
f ord. fn.

Real or comp.
Flg] Gl¢] numbers
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Note: All test functions are in space D(éns with compact supp.)

)

Note: Multiplication of two singular generalized functions or a regular and a
singular generalized functiomsaynot be defined.

Some Operations on Generalized Functions

Equality of two generalized functions on an open intetvé[ @] = G[ @]
onl if for all @in D such thasuppe | , we have[@] = G[@]
(symbolically f (x) = g(x) ).

Example: d8(x) = 0 on (0,) sinced[@] = ¢@(0) = 0 for alkp such that
supp@ U (0, ). This means that a singular generalized function can be
equal to an ordinary function (hefe= 0 ) on an open interval.

97

Multiplication of a generalized functiod q] with a ¢° functiona(x):
aF[¢@] = F[a@] (left side is defined by right side).

Example: ad[@] = d[ap] = a(0)@(0) or symbolically
a(x)o(x) = a(0)d(x), an important result!
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Some Operations on Generalized Functions (Cont’d)

i) Additionof generalized functiongF + G)[@] = F[¢] + G[¢@] or
symbolically(f + g)(x) = f(x) +g(Xx)

Iv) Shift OperationE F[¢@] = F[E_,,¢] whereE_, @ = @(x—h)
Example: E, 0[¢] = o[E_, @] = ¢(-h) or symbolically
[En0()e(x)dx = [o(x+ h)@(x)dx = ¢(-h)

Note: Generalized functions are not defined at a paihbh open interas.
In practice, this does not cause problems.

* We can define other operations sudhlation:

Ié(ax)(p(x)dx = |'§T|(p(0) O d(ax) = |—§—|6(x), andFourier transform(F.T.)
Flo] = F[g], ® = F.T.(¢) wherep now belongs to space of rapidly

decreasing test functioi®s For our purpose, the most important operation on
generalized functions dhifferentiation
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Differentiation of Generalized Functions
All test functions are in D.

« f(X) ordinary function, differentiablés[¢@] = If(pdx , we must ident#y] @]

WithIf '‘(pdx. But F'[ @] EIf’(pdx = —If(p’dx = —F[@'] sincep'eD .
Therefore, we use the relation:

F'lol = -F[¢]
as the definition of derivative of any generalized funckfp]. Similarly

F(M[g] = (-1)"F[¢(M], i.e., generalized functions have derivatives of a

orders.
Examples

) o'[e] = -ol¢] = —¢/(0) or [o'(x)p(x)dx = —¢'(0)

i) 3"[@] = (-1)%3[¢'] = @"(0)or [0 (X)e(x)dx = ¢"(0)

Note: If an ordinary function is differentiable on real line, thégen = f'
However, generalized derivative of an ordinary functianbe a'singular

generalized function.
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Differentiation of Generalized Functions (Cont’d)
Notation: For ordinary (regular G.F.s) functions, we Uuséx) Calefr for
féen. to distinguish generalized from ordinary derivative. X
Example: Generalized derivative of an ordinary
function with a jump.

f(x)

_—
Jump Af = f(xg4) — f(Xg.)

Flo] = J’fcpdx, @eD /

X

Xo

F'lel = Flg'] = [T ¢'dx

_ _E Xo-_I_J_OO Ef @ dx :If’(pdx+Af QO(XA)
DI—OO X0+ [] °

or symbolically

f1(x) = f(x) +Af 3(x— X))

21 of 95, September 1996
F. Farassat, Aeroacoustics Branch
Fluid Mechanics and Acoustics Division
NASA Langley Research Center
Hampton, Virginia



Differentiation of Generalized Functions (Cont’d)

Example: Generalized derivative of Heaviside function

=gt X0
10 x<0
h'(x) = &(x) sinceh’(x) = 0 on(0, ») O (-, 0) .

* Note: Even at this leel of exposition, we can do a lot we could not do by using
ordinary functions. W can discuss Grearfunction of an O.D.E., foxample.
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Some Important Results of Generalized Function
Theory

« Structure Theorem of D': Generalized functions iD’ are generalized
derivatives of finite order of continuous functions.

« Sequences of Generalized Functions sequenceR,[¢]} of generalized
functions isconvergentf for all geD, the sequence of numbefs{q]} is
convergent.

 Theorem: The spac®’' is complete.

This theorem implies that a cm1gent sequence of generalized functiongsgi
(i.e., converges to) a generalized function. This theorem is the basis of the
sequential approach to generalized function theory (see books by Lighthill and
Jones).
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Some Important Results of Generalized Function
Theory (Cont’d)

« Exchange of Limit ProcesseswWe can exchange limit processes when we
dealing with generalized functions. This result is very important in
applications.

Examples

02f 02 f 0 0

ax,0x; = ijaxi; |Zg!; = é.z a—xlg; = iga_x

. _ . _ é . . g
nllinoo Z = Z nIlinoo..., T lim ... = Ilim T

m m m - oo m - oo

Note: In the rule of exchanging the order of differentiation and integration, we

assume tha® is independent at .
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Green’s Function of a 2nd Order Linear O.D.E.

du = f(x) xe[0, 1] Linear 2nd order O.D.E.

Given EBCl[U] = a,u(0) + b u'(0) +c,u(1) +d,u'(1) = 0
, , fLinear HomogeneouBCs
SBC,[u] = a,u(0) + b, (0) +c,u(1) +d,u'(1) = 0F

Assume there is a functiagx, y) (Green’s functiohsuch that
1
u(x) = [ Talx y)dy (1)

We are interested in solutions wherec! and u is twice differentiable so that
U' = u' andl’ = u' and, thereforéy = lu .Hele stands for the
differential equation where ordinary derivatives are replaced by generalizec
derivatives. From eq. (1), we have

|-

. ——) 1 = .
lu(x) = IXJ'Of(y)g(x, y)dy = J’Of(y)lxg(x, y)dy (exchange of limit proces

= f(x) (by the O.D.E)
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Green’s Function of a 2nd Order Linear O.D.E.
(Cont’d)

Therefore 1g(x y) = 8(x—y)
We will interpret this equation later. Note that since the boundary conditions are

: 1
linear: BC,[u] = BCl, Xfof(y)g(x, y)dy

= [ 1(9)BCy ,{a(x Y]dy = 0

A similar result also holds fd8C,[u]

0 [BCy la(x y)] =0, BGC, [g(xy)] =0

l.e.,g(X, y) in variablex satisfies botiBC's.
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Green’s Function of a 2nd Order Linear O.D.E.

(Cont’d)
 What is the interpretation dT;‘(g(x, y) = o(x—-y) ?
d?2 g
Letl = A(x)d—— + B(x)— + C(X), theng(x, y) and (x y) must hae some
X2
kind of discontinuity akk = vy .
1 g9,(% Y) X<y g1 2
Letg(x y) = 0O I
O 9,(%Y) X>y
N 0 X=y 1 X
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Green’s Function of a 2nd Order Linear O.D.E.

(Cont’d)
og _ 09 _
Then I aX+Ag6(x Y)
329 0° 079, 209
= A X—Y)+Agd (X—
2 a2 %( y) + Ago' (X —-Y)

Tax Y = L,a(x 9+ [AWAEZIE: By)ag|s(x-y) + A)AGS (x-)

o(x—Y) (by the result of previous page)

_ 090 _ _
[JAg = Oatx = yandA@XD A )atx y

This means, g,(x, y) = 1,95(X, y) = 0, g(X, y) Is continuous ak = y and

g—?( has a jump equal th/ A(y) a =Y.

28 of 95, September 1996
F. Farassat, Aeroacoustics Branch
Fluid Mechanics and Acoustics Division
NASA Langley Research Center
Hampton, Virginia



Generalized Functions in Multidimensions

« Space D in Multidimensions This space is formed ko’ functions with
bounded support. Define

% 22 X < n 1/2
Q(x; a) = Eex a2_|>><|2J 2, X = {Z X,ﬂ
0 0 X = a =1

This belongs to D im dimensions. Given any continuous functmix) and
any bounded regiof

P(x) = ZEQ.ZJ(Y/)CPO?—?; a)dy
0 Ww(x) eD

* As in the case of space D in one dimension, the space Dimension is
populated by an uncountably infinite number of functions.

29 of 95, September 1996
F. Farassat, Aeroacoustics Branch
Fluid Mechanics and Acoustics Division
NASA Langley Research Center
Hampton, Virginia



Generalized Functions in Multidimensions (Cont’d)

» Generalized functions n dimensions are continuous linear functionalsion
dimensional test function space D.

 Examples

) [o(X)e(x)ax = ¢(0)

i) [ [-800]ecodx = - $2(0)
- |

* From our point of view, the most important generalized functions are delta
functions whose supports are on open or closedsesf e.gd(f). We need to
Interpret integrals of the form

= [8(fe(x)dx and 1, = [ &(F)e(x)dX .
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How Doeso( f) Appear in Applications?

Assumeg(X) is discontinuous across the surface vi
f(X) = 0 with the jump
Ag = g(f= 0+)—-9g(f=0-) f(x)=0

Set up coordinate syste@n1 2) onf =0 and e&tend these coordinates to the
vicinity of f = 0 along local normals akeu3 = f as third local &riable. Then
(assumingg is continuous irud, u? )

dg _ 09 . Gg _ 0g 3
—= = == 1 = 1,2 and + Ag o(u®)
ou'  aul gud  gud

dg _ dg ou' _ ag au' au3 3, _ 09 , A 0uS. 3
0X; ol ax Ayl ax ax ax, o) = 5 +Agax o(u%)

]

Sinceu3 = f , we havfg = Og+AgOf 3(f)

00y = 00 +Ay 0f 8(f)

Similarly | _
Oxg = 0Oxg+AgxUf o(f)
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How Doeso(f) Appear in Applications? (Cont'd)

* In our work the discontinuities in functions are either real (e.g., shock waves)
or artificial (e.g., across blade surface in derivation of FW-H eq.).

« Example: Shock surface sourcas Lighthill jet noise theory. Let the shock
surfaces be defined dy(xX,t) = 0 . We can show that Lighthill's equation is
valid in presence of shocks if we interpret the\a@gives of the source term as
generalized derivatives:

02T
2R — 1J
Hp axiaxj
5 [T,
B ax{a X Tii ax B(f)}
ale T Oof
_ 9 ij o
X% +A %6(f)+ [AT”a 6(f)}

1 O ||| o
Turbulence Shock Surface Sourc
Source
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Elements of Differential Geometry
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Some Results From Differential Geometry

 Introduce the local surface variab(esl, u2) on 4
surface. Define local tangent vectors= or/aul

andr, = or/du? . In general, these are

not of unit length. Legij =T D’j the first
fundamental fornms

dI? = g,,(dul)? +2g,,duldu? + g,,(du?)?,[g,, = 9. This giveshe

element of lengtbf a curve on the surface. In this relat'gqp 's are known

coefficients of the first fundamental foivide defineg(z) athe determinant of

coeff. of 1st fundamental fon@(z) = 911 912 = 911922—9%2-

921 Y922
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Some Results From Differential Geometry (Cont’d)

» We can show thdahe element of surface area IS = ‘*rl X rz‘duld u?.

Since 9(2) = ‘flm“z‘z , we hav|dS = /gtz)duldu2

Note: We use summation convention on repeated index below.

L _ . 19119
« Defineg! as elements of the inverse of the madix 11512 :

1921 922

i.e.,G_l = {gll 912:| [] gll = %,gzz — %’glz ) 921 — _% -
921 g22 9(2) 9(2) g(z)

We have gijgjk = 6|i( Wher(éL Is the Kronecker delta.
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Some Results From Differential Geometry (Cont’d)

» Define bij = rij [N where‘ij = 92¢/0u'dul The second fundamental form

is|M = byy(dul)?+2b,,duldu? +b,,(du?)?|. Note thab,, = b,, and

N is the local unit normal. In this relatidnﬁ 's are knawn ascoeficients of 2nd

fundamental form

b,. b
lp o= | P11 P12 w2
b = = byybyy—D7,

b21 b22

The quantityb is the determinant of coefficient of 2nd fundamental form.
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Some Results From Differential Geometry (Cont’d)

» What isthe geometrical meaning d1?
d = n0dr

1
= nijtydul+rydu? + 51 g (duh)?

+ 2t duld? + 1 pp(du?)?] + ..

= %n +O(dd)®  On=2d

* Another relation forbij bij = —f‘i Ehj n. = on/oul

* Weingarten Formula: |n, = —bIJ [i*j where|b) = gjkbki . We are using

summation convention here.
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Some Results From Differential Geometry (Cont’d)

e Gauss Formula rij = Fkrk+b N whererilj? Is Christoffel symbol of 2nd
kind.

» Christoffel Symbols. First kindrijk , second kinﬂi'J?

ag. ag : ag..
_ 179jk ki~ dij —
rijk = 2{ o + Ul aukJ and I'ijk = rjik

k = gk'I' and rilj = I'}i

Note: Christoffel symbols are not tensors Wf@li? gij, bij’ b] are.

092 _
o MJ902)

o A useful result
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Some Results From Differential Geometry (Cont’d)

e Gauss Formula

— > —
b = 075015 2(022911+011922)‘(r|11r£2_r|12r12)g”

6% = 92/9u'dul. See theorema egregium of Gauss. A very significant result!

* Let us parametrize a cug\n space by length parameser

The unit tangent to the curve|is= dr and the local

ds

curvaturek IS given by

N=9 -k ksol O k:‘_d:j:
ds d

a2 |
ds?
Note thafy always points to the center of cature, i.eN is parallel todt/ d-«.

39 of 95, September 1996
F. Farassat, Aeroacoustics Branch
Fluid Mechanics and Acoustics Division
NASA Langley Research Center
Hampton, Virginia



Some Results From Differential

« For a curve on a surfac¥t/ds2
to the surface.

Geometry (Cont’d)

dr _, du

ds I ds

N 2 i j 2

k:d—r:fd_Ud_u+fd—u
d<s2 ] ds ds I d<2

_ ik du' dul du' dul
=+ — — +pb.. — — N

Ogg2 1 ds ds%k ] ds ds
DOODD0D000000 OO0O00000
kq: Geodesic kn: Normal
curvature vector curvature vec

Meushier Theorel

or

Geodesic curvature is amrinsic while normal
guantity.

curvature is agxtrinsic

has components along tangent and normal

F. Farassat, Aeroacoustics Branch
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Some Results From Differential Geometry (Cont’d)

 The normal curvature is a signed quantitk >0 |,  Plane
then the center of curvature of the curve obtained by ﬂ
Intersection of a plane containimng and the surface,
: i
is on the sideé points to. Note that= %Jg the kn<0

components ofinit tangentto this curve and

k. = bijtitj . Note thalgijtitj =1.

* There are two directions at a point on a surface
orthogonal to each other whete  achieves its

maximum and minimum values. These are known

. - - . . . . 1 d 2 . . I
as theprincipal directionswith principal dicatiahrinetpa

curvaturesk, andk, (normal curvatures).

Euler s Formula

k.(a) = kjcos’a + ko sin‘a
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Some Results From Differential Geometry (Cont’d)

1 1 . 1 . .
Mean Curvature: H = é(k1+k2) = ébll = é(b%-i_b%) , b; - glkbkJ

- — — hlh2 1K2
Gaussian Curvature ‘K = k1k2 = blbz—bzbl\

Theorema Egregium of Gauss The Gaussian cuawureK depends og; and
their first and second derivatives.

We havelK = b , and b was given in termgpfand their first and second

9
derivatives. Thus the Gaussian curvature isyamsic quantity.

- _ 9t . _on
A XN, = Ki x| o= 25, =

oad Y ad

(1,2) Principal
directions

By Euler’s formula [k (a) +k %1 + lTDJ 2
‘402
1
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Some Results From Differential Geometry (Cont’d)

* Theprincipal directionscan be found from solving the quadratic equation:

(du2)2 _duldu? (du1)2 Remembeldul, du?)
=0 defines the directior

tdul +1,du?.

bll b12 b22

911 912 922

 [H2=K]|, H2 = K if and only if the two fundamental forms are proportional.

e Let us displace surfacgiven byt (ul, u2) by
distancea = const. along local normal to g6t
given byR(ul, u2, a) = t(ul, u2) +an(ul, u?) .
If we associate prime guantities$ , we can
show the following

b (1 2\2
T 2 _ 2 _ 2
/g(z) = (1-2Ha+ Ka®) /9(2) 1-2Ha+ Ka 1-2Ha+ Ka
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Some Results From Differential Geometry (Cont’d)

e If we now defineu3 = a be the distance along n
local normal to a surfacg then the three 534 (ul, u2, u3)
dimensional space ne&ican be parametrized by

(ul, U2, ud) andg 5 , the determinant of coefficient 1,20

of first fundamental fornm 3D is given by

O(3) = Giz)(uh U2 u3) = [1-2HU3 + K(u3)?]g,(ut, u?)

From this we find

Wy R, g

[ 6u3 QJS

HereH is the local mean curvature of the surféce
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Some Results From Differential Geometry (Cont’d)

« Let us now have a vector fiefd  in the vicinity n

of surfaceS f = 0. We want to write] [D in a
new way. First parametrize the 3D space in the

vicinity of Sas shown. Then, I@i be the u3 distance
. N f S
contravariant components @f . We have —

_ 1 9 i . .
[] E@ = ) aui[ /g(3)Q] . Now using the result of previous page that

e

93) = g'(z)(ul, u?, ud), we have, using = 1, 2

I 0Q3 . @3 990
(O [6)5— , [./nga]"' + ,
f9(5y ou® (2) ous f9:2) oud g
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Some Results From Differential Geometry (Cont’d)

0
SinceQ® = Q,: [(0m®)s = 0, Hr+ %‘—2HQn A very useful result

GT = é—én surface component @

0, [@7 is thesurface divergencef @ = Qlt, +Q%t,:

0,1 = == [ [5,Q%| a=12

Example: 0 [T phd(f)] = a%[pé(f)]—ZHfé(f) = p&'(f)—2H 3(f)

wherep s the restriction gftof = 0 (explained later), arid; is the mean
curvature of = 0. Note thabp/dn = 0 . This identity is used in deriving the
supersonic Kirchhoff formula.

46 of 95, September 1996

F. Farassat, Aeroacoustics Branch
Fluid Mechanics and Acoustics Division
NASA Langley Research Center
Hampton, Virginia



Integration of Delta Functions
and
Solution of Wave Equation
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The Integration of &(f) and &'(f)

We assumd (X) is defined such that| = 1

always be done. This meatils=dn=d

- Parametrize the space in vicinity of surfice0 by variablesi?, u?, u°) as

[ —~(ul u2 u3)
(ul, u2, 0) f=0

shown. Then

I3 = [(R)3(f)dX

dx =, [g3dutdurdu’

on the suffad® This can

= ozt v

1] = Icp(f()a(u3) 9(2) duldudud = [l 3 - ¢ /g(z)dulduz

,u3) duldu?du’

u3 distance
fromf=0

I3 = [o03()dx = [ @(R)ds
f=0
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The Integration of o(f) and &'(f) (Cont’d)

5 = [O(X)8 (f)dx = I(p(k)é’(ug’) 9(2) dulduldud

- 9 , 1442
= - a—ué[cp(y‘()@]uszodu du

_99 14,2
I_ au3+2chpJ /g(z)du du

where we use@d /gez) /6u3)u3 —o " —2H ¢ /9(2) K local mean
curvature orf = 0.

_ : _ 40,
I3 = [@O8(F )k = flo[_a—nqucdes
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Integration of Product of Delta Functions

Let f(X) = 0 andg(X) = O be two intersecting surfaces in 3D. We want to
Integrate

= [e(x)0(T)o(g)dx

|Vi| = Vg

Let the two surfaces intersect along the cuirv®n local plane normal tio,
parametrize spacelyt = f U2 =g ,and =y ,wheisthe distance
alongr. Extendul andi? to the space in the vicinity of the plane along loc

normal to the plane.
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Then

Integration of Product of Delta Functions (Cont'd)
142413
dx = du~dusdu | Sind = [Ax i
SinB
O(R) s/vIysi 2yl 23 — O(X) 4.3
| = I <n0 o(u+)d(u4)du-du~du __g Slnedu
3 Also if [Of| #1 or|Ogl #1
_ 0
| = — dy _ (p(k)
f l 0Slne | I |Df||Dg|sm6 dy
g =0
g = 0
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lllustration of Manipulation of Generalized Functions

Let (3 be a vector field which is zero outside
and nonzero insid@.

vf

Sl
I

0Q

AQ = Q(f=0+)-Q(f=0-) = -Q|,
0 = 0M+AQM3(f) = OM-Q,3(f) £>0

1
o
0]

Now integratdﬁ @ over the entire 3D spacf.ﬁ Mdx = 0 since

Ia dxldxzdx3 I%Ql‘

B _
‘ ) Ddx2dx3 =0
X, = Xy =—%

Similarly for 0Q,/dx, anddQ,/dx, . Now, we have
Ii Ddx = [0 0 -Q,5(f)]dx = Zg N Di)dx—al Q,dS = 0
Q
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lllustration of Manipulation of Generalized Functions
(Cont’d)

This isthe divegence theam This result is alid if (3 IS discontinuous across a
surfaceg = 0 insideQ.

[ 0 Mdx = zg [0 0 +AQ [ 3(g)] dx

= £ DDi)d?HA‘AQn, ds = a‘[:QndS
g

n = Vf
éD E(_jdk - a,andS_ JQAQn' dS A\';vgo v

AQ,, = M Q(g=0+)-Q(g = 0-)]
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lllustration of Manipulation of Generalized Functions
(Cont’d)

In deriving conservation laws in differential form from finite volumes involving

discontinuous functions, whenever the divergence theorem is used to conv
surface integrals into volume integrals, one should use generalized derivat
Such conservation laws have the jump conditions incorporated in them.

Example: Shock Jump Conditionket the shock surface be given by

f(x,t) =0,0f =n, O of _ -v,, local shock normal speed,

ot

mass continuity eq.: a—p + %(pui) =0

ap

L+ (p) % aX(pu) 8pZL5(f) +A(pu) £ 5(f)

I
EIEIEIEIEIEIEI (N o O I

= 0 [V Ap +A(pu )]8(f) = 0

ert
ve.

NS.

U {Alp(u,—vy)] =0 Similarly for momentum and energy equatio
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Things to Know About Green’s Function
of Wave Equation

 The Green'’s function of the wave equatiortha unbounded spade

G(y,1; X t) =

N .

g=T1-t+ ([: outgoing wave

(y, T) sourcespace-time variables

(X, t) observerspace-time variables

=>]

-

y
Source

f=rlr

Observer
X
r=%X-y
Radiation
direction
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Things to Know About Green’s Function
of Wave Equation

* There are many methods to derB¢y, T; X, t) rigorously. It is easy to show
thatG dependsox—y and-1 .Usimp-y =1 A,=t-1 , taksatial

Fourier transform orf_jz(f )\)G = O(r)d(A) to get a simple problemvalving

finding the Green’s function of an O.D.E.AnThe inverse spatial Fourier
transform of the Green'’s function of the O.D.E. gives Green’s function of the
wave equation for both the outgoing and incoming waves.

F=X—y, = X=3, F‘zg, or or _

Useful things to remember

56 of 95, September 1996
F. Farassat, Aeroacoustics Branch
Fluid Mechanics and Acoustics Division
NASA Langley Research Center
Hampton, Virginia



Things to Know About Green’s Function

of Wave Equation

The support 0d(g) is on the surfacg = 0.

The surfaceg=0isr = |[x—y| = ¢c(t-1).

This is thecharacteristic con®f the wave

equation with vertex atx, t) . Sinee? is a
differential equation with constant coefficients,

g = 0 is also the&haracteristic conoidvith vertex

at (x, t) . This gives us the picture on the right. No
that we have drawn the 3D spdeeas a plane in the
figure. Therefore, this figure is a 3D illustration of
what happens in 4D (3D space + time).

 Note: g =0 is a cone because if the
4-vectorA = (X—¥,t—1) lieson

Time

Time axis

Characteristic cone (Conoid) at
gx, t). Qis the unbounded

-space. DOD is domain of
dependence of (X, t) which
depends ont

g=00 aA = [a(xX—V),a(t—1)] also
lies ong = 0. This is the property of a cone.

F. Farassat, Aeroacoustics Branch
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Things to Know About Green’s Function
of Wave Equation

* Visualization of domain of dependencd xft) In four dimensions

Fix (X,t) andt O r = c(t—1) Iis a sphere with
center ak and radiugt—t) . Any source on
this sphere at timg, contributes tx at time

As T increases, the radius shrinks, hence we
have acollapsing sphereRadius becomes zero
att = t.

Q:
Surface
of sphere
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The Collapsing Sphere Concept

Equation of collapsing sphene= c(t - 1), (X, t) fixed

Collapsing sphere
at source time t

r=c(t-1)

r-curve \

Observei
position X

Blade position at t

The Z-surface is the locus éf-curves in space. If the blade surface is described

by f(y, 1) = 0, the equation of the-surface is:

F(V; % ) = [f(}, D], = (3 t=r/c) =0, (X 1) fixed

F. Farassat, Aeroacoustics Branch
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Construction of 2-Surface for a Helicopter Rotor Blade

Observer
position

|
.
\ \
I\ \\ \ \
\ \‘\ \ \ \\
AY \\ \ \

. -
. ~.
\\ N e

AN -
N s\\ ~. ~—_
"\, \ e
N ~.
. N
‘\ N T

. . e ——

~N ~.

In this construction, we have taken a rotor blade of zero thickness rotating
rotational Mach number 0.67 and fawd Mach number 0.15. The obsanis in

the rotor plane. The circles are the intersection of the collapsing sphere wit

plane containing the rotor. The circles are drawn at equal source time inter
The obsergr time ist = T + r/c wherer is the radius of the collapsing sphere.a
Note thatt is fixed for the abov&-surface.

with

h the
vals.
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Use of Green’s Functions for Discontinuous Solutions

Green'’s function can be used to find discontinuous solutions if the derivatives in
the differential equation are treated as generalized derivatives. This adds to
usefulness of Green’s function.

Example: Green’s Identity for Laplace Equation

- [ -
Let o(x) = g @R XeQ [ 0245 = 0 everywhere
1 0 X¢gQ

D(p = D(p+A(ph6(f) = Dcp @no( )

(2¢ = 02p—0@h3(f) -0 end(f)]

= — Eﬁé(f) — O Ooend(f)] Interior Problem
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Use of Green’s Functions for Discontinuous Solutions
(Cont’d)
Since this equation is valid in the unbounded space, we can use the Green’s

function—Arim to get the Green’s identity

~ _ 1009 @n
4rp(x) = [ T 308(f)dy+ Oy I <=8( )y
®
= 15‘Pds+mkmf Pas= [ Las- [ L22as
ro r r2
f=0 f=0 f=0

This method tells us that wheuw Q cp,: O  which is not obvious from the
classical derivation. The exterior problem is similar.

Note: r = |X—V| is the only term in the integrands of the above integrals which

IS a function ofx . We assume thiat is not locate@andSis piecewise
smooth. The justification for the exchange of the divergence and integral
operators follows from classical analysis.
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The Two Forms of the Solution of Wave Equation

(Volume Sources)

We want to find the solution diﬂch = Q()x 1)

4me(x, 1) = [ TQ(3 T)3(g)dyel

All volume integrals are over unbounded 3 space and all time integrals are

(—oo, t).
09

) Lett- gl 37 - 1 and4me(x, t) = J’ %Q%/ g+ t—E %(g)dgdil

Integrate with respect @to get

4%, 1) = | %Q%y t— £ Hay = [

[Ql e

[

dy

Retarded Time Solution

F. Farassat, Aeroacoustics Branch
Fluid Mechanics and Acoustics Division
NASA Langley Research Center
Hampton, Virginia

63 of 95, September 1996

over



The Two Forms of the Solution of Wave Equation
(Volume Sources) (Cont'd)

1.
=f

i) Let ys - g0 53 = —fg

g
0ys
dy,dy
C T 1772
() = [ EXE5(g) g e

dy,dy.
Since in the inner inggrals(x, t) and are fived, ther}—‘—;—‘—2 = dQ element of
3
surface area of sphere= c(t—1) . Integrate with respegtdoget:

ATIQ(X, 1) :J' — J’ Q(y, 1) dQ

r=c(t-1)

Collapsing Sphere Solution
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Derivation of the Stationary, Subsonic
and
Supersonic Kirchhoff Formulas
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The Governing Wave Equation for Deriving
Kirchhoff Formulas

We considethe exterior problenmere.

Q: The exterior unbounded space

D Q ~
Let (X, 1) = ox D xeQ 0% = 0 everywhere
D 0 XgQ
0p _ 00, _ a_cp_
ot~ at é(f) Vn®(1)
wherev = 9" s the local normal velocity 6% 0 | g n = vf
ot 2=
f(x,t)=0

A moving deformable
surface
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The Governing Wave Equation for Deriving
Kirchhoff Formulas (Cont’d)

Next take the second time derivativefp)f

029 _ 929 d¢ of 520
o2 ot2 "ot até(f)_ Va®o(f)] = 32 > ~Vn®o(1) — 5 [Vn<P5(f)]

Similarly for the space derivatives we have:

Op = Do+ on3(f), 0% = D%+ @ 8(f) + 0 en3(f)]

The above results give:

wncp

. 227
(2 = 1079 =27

2
¢ = 0Op-
c2 9t2

canB(f)

1 0
— 5LV @0 ()] = 0 L end(f)]
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The Governing Wave Equation for Deriving
Kirchhoff Formulas (Cont’d)

Since[lzfp = 0,andusiny, = v /c ,we get

029 = By + M@ F5(1) -2 2[M 0 8(1)] -0 o h 5(F)

We now solve this wave equation for stationary, subsonic and supersonic
surfaces.
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Derivation of the Classical Kirchhoff Formula
The Kirchhoff surfacef (X) Is now stationary so thgt = 0 . The governing

wave equation is 02 = —@,0(f) =0 Qend(f)]

- 0
4TQ(R 1) = [ —ri‘a(f)a(g)dydr -0, "’Tﬁa(f)a(g)dydr

whereg,, and@in the intgrands are functions ¢y, t). Now lett - g, g—g =1,

and integrate with respectgopto get
(y,t—r/c)
r

r/c)n

~ @,
ATiQ(X, t) = —J’ O(f)dy

We have dealt with these integrals before. The integratid fof gives

&(f)dy - 0, [ B

4nfp(5‘<,t):— I %cpn(y,t—r/c) dS_DiDI ?cp(?,t—r/c) ds
f=0 f=0
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Derivation of the Classical Kirchhoff Formula (Cont’d)

Taking the divergence operator in and using subscript ret for retarded time, we

getthe classical Kirchhoff formula

—1;
[ @cosO - (pn] ret cosb

4T(X, 1) = [
f=0 f=o T

dS+ [ 5[0l dS

In this equationcosB = n EF\ . Again, our method tells tﬁx@t‘(, t) =0 In the

Interior off = O which is not obvious from classical derivation.

Note: Onlyr is a function ofk in the integrands of the integrals in previous

vugraph. V¢ assume is not onSandSis piecavise smooth. The justification for
bringing the divergence operator inside the integral follows from classical

analysis.
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Derivation of the Subsonic Kirchhoff Formula

We now assume a deformable surface moving at subsonic speed.

Governing equation

029 = ~(9y+ M 0)8(1) ~ 2 M 08(f)] - O on3()]

4R, ) = o T (9, + M, @)3(1)3(g)dyet

10 .1

ST I FMn(pB(f)B(g)d?dT

-0, T 70,8(1)8(g)dyet

Note that in the above equatiocpT = %S:T)
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Derivation of the Subsonic Kirchhoff Formula (Cont’'d)

In the last integral, take divergence operator in. It only must operaéfgfgé)n

which depends or. Now use the follaving result to write the last ingeal as tvo
integrals:

%

o(9)
r2 ’ r

1 =v

-~ )
[

o[48) - 13 2]

aNx, %cphé(f)é(g)dydr = [ 8(f)n Dj{@}dydr

- _1
C

a% [ %cpcos@é(f)é(g)d?dT

- ;1—2cp00565(f)6(g)d57dT

Substitute in equation fcfp above. We have used the rule for the exchange of
limit processes for generalized functions here.
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Derivation of the Subsonic Kirchhoff Formula (Cont’'d)

AT(X, 1) = —

We have two kinds of integrals in the above equation
= j Ql(?, 1)3( 1)3(g)dydr
2 T C at I Qz(y 1)0(f)o(g)dydrt

-

20, + <M 0,)8(f)8(g)dyer

+

-

+% g—tfl(cose M ) @d( f)3(g)dyd

" 2 pcoshd( f)3(g)dyde
,
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Derivation of the Subsonic Kirchhoff Formula (Cont’'d)

e Let us parametrize §(y, 1) = 0 by surface coordingtes u2) with
domainD(S) . We assumg(S) Is time independent. This is always possible.
But 9(2)’ the det. of coef. of 1st fund. form is a function of timE&arametrize

the space nedi= 0 by takingu3 = f and etend(ul, u2) along local normal
tof=0. Now we havely = /g, d uldu?dud (strictly speaking, we should
useg&z) but it makes no difference here).

We useQq (ut, u?, ud 1) forQ[y(ut, u? ud 1), 1] in,
1] = "Ql(ul, u2, u3, 1)d(u3)d(g) /g(z)dulduszSdT

=1 { Q4 (ul, u? 0,1)5(g) /g(z)duldusz
~ D(9
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Derivation of the Subsonic Kirchhoff Formula (Cont’'d)

Now lett - g,a—g = 1-M, becausgy = T—t+|x—y(ul, uZ 0,1)/c |

0T
N 1,2 s
M:ay(u,u,o,r)’ M = MO0
0T r
|, = 21/92) duldu?
1 1-M .
D(S) r it

Heret* is the emission timef point (ul, u2) onf = 0 for a fixed(x, t) .

The emission time* Is the solution of:

™ —t+ \X—i/(ul, u?, O,T*)\/c =0
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Derivation of the Subsonic Kirchhoff Formula (Cont’'d)

Similar procedure fot, gives

Ol

{ L 0 %.?Z‘Q(Z)DJ duldu?
NE)

[]
1-M, ot gl1-M, o »

We note that* = 1*(ul, u?; %, t) sotha

d

_ 0t 0
%E =

ot ot*

‘ . From the equation
X

| OT*

for emission time
ot

1

1-M,
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Derivation of the Subsonic Kirchhoff Formula (Cont’'d)

From the results for, and, , we get

{((pn T M), g(2)} duldu2
-l-*

mpx Y = - r(1-M.)
r

D(9)

+ {cpvg(z)cose} duldu?
D{S) r2(1_Mr) T*

-[*

1 {
+ = E (]
CDJS) 1-M, ot r(1-M,) (]
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Derivation of the Subsonic Kirchhoff Formula (Cont’'d)

» This result was originally derived by W. R. Morgans (Phil. Mag., vol. 9, 1930,
141-161). It was rederived by Farassat and Myers using the above method
(JSV, vol. 123(3), 1988, 451-460). These authors have given a useful formula
for applications in the following form

4nc~p(i, t) = I {Ela/g(Z)} duldu? + {(pEZ«/g(Z)} duldu?
D(9) r(l_Mr) * D{S) r2(1—Mr) *

whereE, ande, are long expressions given in the above reference. This
formula was verified by using analytic input for rigid surfaces.

* Note: The above Kirchhoff formula has a Doppler singularity in the
denominator for supersonic surfaces. This makes the above result unsuitable
for a supersonic surface. However, the supersonic Kirchhoff formula is
iInherently less efficient on a computer. We prefer to use the above formula for
any panel on the Kirchhoff surface without the Doppler singularity.
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A Simple Trick in Preparation for Supersonic
Kirchhoff Formula

To reduce algebraic manipulations and to obtain the simplest form of the
supersonic Kirchhoff formula, we introduce the following trick. Note that in the
governing wave equation for deriving Kirchhoff formula, we have terms

Involving time and space deeitives:a%[Mn(pé(f)] and] (Jond(f)]. We need

to take these derivatives explicitly. We propose the following simplification of
this process.

Observation: @(x)0(x) = @(0)d(x) take derivatives of both sides
@' (X)0(x) + @(x)d'(x) = @(0)d'(x). Itis obvious that the right side is simpler
than the left side. What is so special ab@i) d(x) ? [péxe restsictedto
the support of the delta function, i.e5 0. Can restriction ofp(X) to the support
of d(f) in @(X)d(f) reduce manipulations when we take derivatives of
@(x)d(f)? The answer is yes!
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A Simple Trick in Preparation for Supersonic
Kirchhoff Formula (Cont’d)

We use the notatiop(X)  for restriction@fx)  to the suppoKi(df)

Using the local parametrization of space rfead ((ul, u2) onf =0,
us = distance fromf = 0), we have @(x) = @(ul, u?,0)

Similarly @(x, t) = @(ul, uZ 0,t), noteu' = u'(x,t) we have

o(x )o(t) = @(x )o(f)

See NASA TP-3428 for some more explanation. In manipulation of term
iInvolving derivatives of the product of a delta function and an ordinary function,
always restrict the ordinary function to the support of the delta function.

80 of 95, September 1996
F. Farassat, Aeroacoustics Branch

Fluid Mechanics and Acoustics Division
NASA Langley Research Center
Hampton, Virginia



A Simple Trick in Preparation for Supersonic
Kirchhoff Formula (Cont’d)

Ule(x, 1)o(1)] = Oeo(T) + @l o'(T) (A)
Ol@(x, £)8(f)] = O,03(f) +Of&'(f) (B)

wherell,@ Is the suaice gradient ofp. As expected, the ingration of the right

side of (A) is algebraically somewhat more complicated than integration of the
right side of (B).

09 _ 99, 09
Non

, ¢ _ 09 __09
Note that n Friialier

ox. 0x ion| °

Q)l (o))
S g
1
o

\Y

_ o 5 0 3 0Q
Note: Wave propagation literature ugc)% fg)rz—i a@% f%r;
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Derivation of the Supersonic Kirchhoff Formula

We are nw interested to deslop the supersonic KirchHdbrmula for a panel on
the Kirchhoff surface. This is only because of practical consideration. On the

surfacef (x,t) = 0 , we define a panel by its edge

curvef = 0 suchthaf >0 on the panel and
Of = v the local unit geodesic normal at the edge

~

f = f = 0. The geodesic normal is tangent to the
panel and normal to the edge. Denoting Heaviside

function byH(f) , our governing differential equatiof
for finding the Kirchhoff formuldor the panels

GT_I [V =1

A panel
Vv the unit geodesic normal

~O enH(F)3(f)]

020 = ~(9y+ M o)H(D)3(1) ~ < S[M, oH(T)5(F)]

F. Farassat, Aeroacoustics Branch
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NASA Langley Research Center
Hampton, Virginia

82 of 95, September 1996



Derivation of the Supersonic Kirchhoff Formula
(Cont’d)

d ~ 10 ~ “
S IMa@H(H)3()] = < (M@ H(F)3() —M M, ¢5()3(f)

Ol

~M2@H ()5'(f)

whereM,, = M ¥ is the local Mach number of the edge in the direction of
Using the divergence result derived earlier, we have

O AH(F)3(F)] = —2H  @H(F)3(F) + @H()&'(f)

wherer Is the local mean curvaturef efO.
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Derivation of the Supersonic Kirchhoff Formula
(Cont’d)

The governing equation for deriving the supersonic Kirchhoff fordaurla
panelis

~

020 = — [¢, +c7IM, @ +c7HM ¢) —2H (@] H(F)3()
~(1-M2)QH(f)&'(f) + M M, o3(f)3(f)

=g H(T)3(F)+g,H(F)8'(f) +ag8(1)(f)

We see that we have three kinds of sources which we will treat below.

« Note: The solution of wave equation with sources of the type in the above
equation is given in detail in NASA Technical Paper 3428, May 1994, by
F. Farassat.

\V
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Derivation of the Supersonic Kirchhoff Formula
(Cont’d)

Let (~p = @, + @, + @5 Whereg, ’s are solutions of wave equation with sources
involving g; (i =1-3).

D¢, = g H(F)3(F), 029, = g,H(F)3'(f), O%@, = q38(f)3(f)

) Solution of[02¢, = q,H(f)3(f)| [Eq. (4.23b), NASA TP-3428]

ql(?i T)

4mg (%, 1) = | H(f)d(f)d(g)dydt

Lett - (@, %’ = 1, integrate with respect tp
[9,]

[

4mgy (%, 1) = [ T (F)3(F)dy
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Derivation of the Supersonic Kirchhoff Formula
(Cont’d)

HereF(y; X, t) = [T(V, T)] ;g
(3% 1) = [F(3Dlret

We hare treated intgrals of this type before. 8\vrite the element of sace
area ofF = 0 bydz. TheX-surface was explained earlier.

f(y,t—r/c) and
f(y,t—r/c)

_ [9,] ret
g (x ) = [ Ao
>

A2 = |OF|2 = 1+|v|§—2|v|ncose cosh = n [T
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Derivation of the Supersonic Kirchhoff Formula
(Cont’d)

iy Solution of | 02¢, = g,H(f)8'(f)| [Eq. (4.23e), NASA TP-3428]

q, -
amg,(x 1) = [ F2H()3 ()8(g)dyde

Lett - @, 99 _ 1, integrate with respect tp

0T
(9] -
4migy(%, 1) = [ ——H(F)8 (F)dy
r
The interpretation of integrals involving derivatives of delta functions was
given before. Note that we get a line integraFos F = 0O because
0

=5 H(F) = NIOF §(F)
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Derivation of the Supersonic Kirchhoff Formula
(Cont’d)
0 1 9 Wl 2Pl o0
ATIP,(X, t) = + = + )3
2 FlOD/\aN rA ‘A2 0
F>0
(9] Iretcote’
— I > dL
F=0 rA
F=0
No DF DM e OF VoMV
[OF| A IOF| A
A2 = |0OF|2 = 1+M3—2Mvcosé, co = V[T ,
cosd’ = N[N |, Hp mean curvature d-surface
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Derivation of the Supersonic Kirchhoff Formula
(Cont’d)

i) Solution of

The interpretation of this integral was given before.

025 = d8()3(f)

4TI, (R, 1)

g _ ~
" - O(f)o(f)o(g)dydrt

_ 1 :
= [ 7 lag] B(F)S(F)y

[EqQ. (4.23f), NASA TP-3428]

amgg(x 1) = [

-

1 [95] ret
0 rAg
o)

dL

whereAy = |OF x OF| = AAsin®’

. cosb' = N [N
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Derivation of the Supersonic Kirchhoff Formula

(Cont’d)

Now putting the solutions fap; @, , argl
supersonic Kirchhoff formula

togethefpin , we get the

~ 1 2HE N
4rp(x, t) = V\{Ql + TQ2 +

LTIA

Q, -

N [(0Q,
%

/\2

_/~\c:036’
N

QJdL

whereQ; = [qi]ret’i =1-3

This equation was derived by Farassat and

ASME Int. Mech. Eng. Congress and Expo.
It was also published with improved derivation as a paper at the First Joint

Myers in 1994. It was presented at
, Nov. 6-11, 1994, Chicago, lllinois.

CEAS/AIAA Aeroacoustics Conference, June 12-15, 1995, Munich, Germany.
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The Mean Curvature Hg of 2-Surface = 0 Rigid)

20 (1-M,)? 1-M,
___%_52'?\2% I AR (7 0+ AT+ kA
S|n29|j|. 2 [
3 M+ M2k, +—(7m)(x 7,)
A = (1+M2-2M cos9)l/2,  cosb = NG, T = X%y M = |M],

ft = f —ncoso, I\7Tt = M- Mn (ft andl\7|t are projections of andM on

local tangent plane tio= 0), K, andk, local principal curvaturesfot O, Ky

local normal curvature df= 0 alongy , H: local mean curvaturefot O,
q = (—1:h><d), ® angular velocity, y = nxft, A= nx M, |

= nM, (AL A2) and(VL,¥2) components & and in principal
directions with respect to unit basis vectors, respectively.
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Selection of the Kirchhoff Surface for Supersonic
Kirchhoff Formula

It can be shwn that when the collapsing sphereviesmithe Kirchhdfsurfacef =0
tangentially at a point wheM, = 1, the supersonic Kirchhoff formula will
develop a singularity. One can solve this problem by selecting a biconvex shape
for Kirchhoff surface avoiding the above singularity condition. In rotor noise
calculations, in-plane noise of high speed rotors is the most important. Reasonable
shape of Kirchhoff surface is possible. Farassat and Myers have shown that the
singularity from line integral in Kirchhoff formula is integrable. (See paper in
Theoretical and Computational Acoustigsl. 1, D. Lee et al. (eds), 1994, Wor
Scientific Publishing.)

d

Sharp

Sharp

Supersonic Kirchhoff
| surface
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References for Differential Geometry

Most of the results on ddrential geometry in pwgous pages were kiam by the
end of the 19th century. The contribution of 20th century mathematicians has
been deelopment of general andwerful techniques to sodvdifficult problems
but written in a supposedly rigorous style making differential geometry
Inaccessible to engineers. Here are a few useful books.

1. Dirk J. Struik: Lectures on Classical Differential Geometry, 2nd ed., Dover
Books, 1988.

2. Erwin Kreyszig: Differential Geometry, Dover Books, 1991.
3. A.J. McConnell: Applications of Tensor Analysis, Dover Books, 1957.

4. R. Aris: Vectors, Tensors, and the Basic Equations of Fluid Mechanics,
Dover Books, 19809.
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References for Generalized Functions

M. J. Lighthill: Introduction to Burier Analysis and Genalized Functions
Camb. Univ. Press, 1964. (Generalized functions of one variable, sequential
approach, excellent book!)

D. S. Jonesthe Theory of Generalized Functio2ed ed., Camb. Univ.
Press, 1982. (Multivariable generalized functions, sequential approach
highly technical, full of useful results.)

|. M. Gel'fand and G. E. ShilowGeneralized Functions/ol. 1, Properties
and Opeations Academic Press, 1964. (Probably the best beekwritten
on generalized functions, highly readable, full of useful results.)

R. P. KanwalGeneralized Functions—Theory and TechnjdAmademic
Press, 1983. (Highly readable but also advanced.)

R. S. StrichartzA Guide to Distribution Theory and Fourier Transforms
CRC Press, 1994. (Masterful expository book.)

F. Farassatntroduction to Generalized Functions With Applications in
Aerodynamics and Aeroacoustid$ASA TP-3428, May 1994 (corrected
April 1996). (The main reference for this workshop.)
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